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Abstract: Catalytic dehydration of isopropanol to propylene is a common reaction in laboratories to 

characterize the acid–base properties of catalysts. When acetone is produced, it is the sign of the 

presence of basic active sites, while propylene is produced on the acid sites. About 2/3rd of the world 

production of isopropanol is made from propylene, and the other third is made from acetone hy-

drogenation. Since the surplus acetone available on the market is mainly a coproduct of phenol 

synthesis, variations in the demand for phenol affect the supply position of acetone and vice versa. 

High propylene price and low demand for acetone should revive the industrial interest in acetone 

conversion. In addition, there is an increasing interest in the production of acetone and isopropanol 

from CO/CO2 via expected more environmentally friendly biochemical conversion routes. To pre-

serve phenol process economics, surplus acetone should be recycled to propylene via the acetone 

hydrogenation and isopropanol dehydration routes. Some critical impurities present in petrochem-

ical propylene are avoided in the recycling process. In this review, the selection criteria for the iso-

propanol dehydration catalysts at commercial scale are derived from the patent literature and ana-

lyzed with academic literature. The choice of the process conditions, such as pressure, temperature 

and gas velocity, and the catalysts’ properties such as pore size and acid–base behavior, are critical 

factors influencing the purity of propylene. Dehydration of isopropanol under pressure facilitates 

the downstream separation of products and the isolation of propylene to yield a high-purity “poly-

mer grade”. However, it requires to operate at a higher temperature, which is a challenge for the 

catalyst’s lifetime; whereas operation at near atmospheric pressure, and eventually in a diluted 

stream, is relevant for applications that would tolerate a lower propylene purity (chemical grade). 
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1. Introduction 

Propylene’s main application is in the synthesis of polypropylene, but it is also used 

in numerous applications in the chemical industry such as the synthesis of acrylonitrile, 

acrylic acid, propylene oxide, propylene glycol, etc., but also for phenol synthesis. In the 

latter case, propylene is reacted with benzene to produce cumene. Cumene is further ox-

idized to phenol and acetone. Since the markets of these two products are completely 

different, their prices can vary in opposition, which compromises plants’ expansions. Ac-

etone hydrogenation to isopropanol/isopropyl alcohol (IPA), followed by its dehydration 

to propylene allows the loop to close and to be independent of acetone market fluctua-

tions. According to IHS, such a process was implemented in Japan by Mitsui, which had 

several related patents [1]. More recently, Mitsui communicated on its acetone hydro-

genation process to synthesize IPA [2] and on its biobased IPA process to synthesize pro-

pylene [3].  

Besides this process, there are currently numerous ongoing research activities aiming 

to develop new synthetic routes to acetone and/or IPA. For example, acetone was pro-

duced during the First World War by the Acetone–Butanol–Ethanol (ABE) fermentation 

process. Acetone was an important chemical compound for the production of a smoke-
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free explosive. Whiskey distilleries were converted to produce this important chemical, 

but the plants and processes did not survive the boom of the petrochemical industry in 

the Western world. More recently, several companies have tried to reintroduce the process 

to the market but struggled to achieve an acceptable price premium. This process also 

suffers from the fact that it also generates a major coproduct (n-butanol) which also has to 

find a market.  

Another process to produce acetone is the reaction of two acetic acid molecules, re-

leasing acetone and CO2, known as the calcium acetate dry distillation. This process has 

been extended to longer chain volatile fatty acids (VFA), which include also propionic, 

butyric, isobutyric, valeric, and hexanoic acids, in order to obtain a mix of ketones which 

can be further converted to light fuels including gasoline. This was the technology that 

the US start-up Terrabon intended to implement to make a green gasoline.  

There have also been some attempts in the past to produce acetone via the indirect 

oxidation of propane [4]. Acetone is a common solvent in the chemical industry and a 

valuable source of more sustainable acetone is to use recycled solvent. Indeed, acetone 

can be easily purified by distillation because of its low boiling point. The volumes on the 

market are limited, but the prices can be attractive [5]. 

IPA can also be produced by fermentation to Isopropanol–Butanol–Ethanol (IBE), 

through a modified version of the ABE process. It is otherwise produced by direct hydra-

tion of propylene or by hydrogenation of acetone [6,7]. 

Besides these routes from renewable resources and recycling, acetone has recently 

attracted some interest for production from CO or CO2 through biochemical conversion 

[8,9]. There are still several challenges to overcome in this route, and derivatives are worth 

investigating.  

Acetone recycling to propylene might be unavoidable in the future, as the gap in 

demand for phenol and acetone widens, while nearly 97% of the acetone on the market 

today is a coproduct of phenol synthesis. Moreover, some large consumers of acetone for 

methyl methacrylate (MMA) might shift their production to new processes using ethylene 

instead of acetone as feedstock (the ALPHA process from Lucite/Mitsubishi, and the 

LIMA process from Evonik/Roehm), leaving a significant volume of acetone on the market 

[10,11]. In addition, PMMA is a polymer which is easy to recycle through depolymeriza-

tion, giving a high yield and high purity to MMA and a low carbon footprint, with appro-

priate technologies [12].  

2. Process Conditions 

2.1. Acetone, Isopropanol and Propylene Impurities 

Depending on the process route, acetone and IPA contain different impurities that 

have to be taken into account. Propylene is also marketed with different grades which 

depend on the foreseen application (e.g., Polymer Grade or Chemical Grade), see Table 1. 
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Table 1. Polymer grade and chemical grade propylene. Example of compositions. 

Product 
High Purity–Polymer Grade Chemical Grade 

Methods 
Molar Basis Weight Basis Molar or Volume Basis 

CO  1.0 ppm mol max  0.67 ppm wt max  1 ppm mol max ASTM D-2504 

CO2  1.0 ppm mol max  1.0 ppm wt max  15 ppm mol max 
ASTM D-2505 

MA0743-UP050 

COS  0.02 ppm mol max  0.03 ppm wt max  — ASTM D-5303 

H2O  12.0 ppm mol max  5.0 ppm wt max  10 ppm mol max  
Online analyzer  

MA0743-UP051 

Hydrogen  20 ppm mol max  1 ppm wt max  20 ppm mol max ASTM D-2504 

Oxygen  3.0 ppm mol max  2.0 ppm wt max  5 ppm mol max 

Online analyzer  

SRPS H.B8.700 (2015)  

ASTM 2504-88 (2015) 

Nitrogen — — 50 ppm mol max 
SRPS H.B8.700 (2015)  

ASTM 2504-88 (2015) 

Methanol  5.0 ppm mol max  4.0 ppm wt max  — By GC  

Ammonia  0.50 ppm mol max  0.20 ppm wt max  — — 

Phosphine  0.10 ppm mol max  0.10 ppm wt max  — 
Rateometric colorimetry or 

GC mass spectrometry  

Arsine  0.01 ppm mol max  0.01 ppm wt max  — — 

Methane + Ethane  500 ppm mol max  357 ppm wt max  1000 ppm mol max ASTM D-2712 

Methyl Acetylene  2.0 ppm mol max  2.0 ppm wt max  10 ppm mol max ASTM D-2712 

Acetylene  2.0 ppm mol max  1.0 ppm wt max  5 ppm mol max ASTM D-2712 

Ethylene  15 ppm mol max  10 ppm wt max  500 ppm mol max ASTM D-2712 

Propadiene  1.0 ppm mol max  1.0 ppm wt max  30 ppm mol max ASTM D-2712 

Butadienes  1.0 ppm mol max  1.3 ppm wt max  50 ppm mol max ASTM D-2712 

C4′s  10 ppm mol max  13 ppm wt max  2000 ppm mol max ASTM D-2712 

Propane  5000 ppm mol max  5241 ppm wt max  7.0% mol max ASTM D- 2712 

Propylene  99.50 Mole % min  99.48 wt.% min  93.0% mol min ASTM D-2712 

Total Sulfur  1.3 ppm mol max  1.0 ppm wt max  10 ppm wt max 
ASTM D-4045  

SRPS B.H8. 125 (2015) 
Sources: Composition based on datasheets from Chevron Philipps, high-purity propylene MSDS #5349 (2006) 
for polymer grade and from PetroHeija for chemical grade propylene composition. Note: C4s include iso-butane, 

n-butane, 1-butene, t-2-butene, c-2-butene, and iso-butene. 

Acetone made by the classical cumene oxidation process will always contain some 

trace amounts of aromatics, especially benzene, which has a boiling point close to acetone. 

Acetone produced by fermentation, however, would have no (or very low) traces of aro-

matics, and this would be a key technical advantage in some applications such as cosmet-

ics, for example. Recycled acetone could contain impurities depending on the process in 

which the solvent was used primarily. Acetone obtained from acetic acid and VFAs could 

be contaminated by other ketones, most likely methylethylketone (MEK).  

IPA produced by hydration of propylene would not make much sense if the goal was 

to dehydrate it back to propylene, except in the cases where propylene is mixed with hy-

drocarbons, and hydration would be seen as a way to extract the olefins as alcohols.  

Acetone and IPA can be further purified, but this will come with an extra cost. De-

pending on the final application, this might not be necessary. For example, when acetone 

is hydrogenated to IPA, any poisons for the hydrogenation catalyst should be removed. 

Similarly, when IPA is dehydrated to propylene, it will generate water and some side 

products. Water cannot be considered as a severe poison for the dehydration reaction; 

however, some coke precursors can deactivate the catalysts.  
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2.2. Purification Challenges 

IPA dehydration is done with liquid or solid acid catalysts, but in view of the high 

corrosion risks and expensive materials required for liquid catalysts, a heterogeneous cat-

alyst is largely preferred. 

A challenge in IPA dehydration is then the separation of the reaction products. IPA 

dehydration leads to an increase in the number of moles, so the reaction is not favored by 

an increase in pressure. As all dehydration and hydration reactions are equilibrium lim-

ited, the reverse reactions should also be considered. However, water can also impact the 

side reactions.  

Water and IPA form an azeotrope (31.67 mol% water) which make their separation 

more difficult [13], and it would be relevant to accept some water in the IPA stream any-

ways. If the IPA conversion in not complete in the dehydration reactor, the recycling of 

the IPA–water azeotrope would have to be considered, and in that case, some water 

would be fed to the dehydration reactor regardless. 

Operating under pressure is not favored by thermodynamics when considering 

merely the reaction. However, when looking at the downstream purification it would 

have several advantages. The reaction products at full conversion will be water and pro-

pylene. There might be some trace amounts of remaining IPA because the reaction is equi-

librium limited. When the stream is cooled, propylene remains in the gas phase while the 

water and IPA traces are in the liquid phase. If the reaction is done at atmospheric pres-

sure, there will be always some water partial pressure in propylene (Figure 1). 

 

Figure 1. Figure built on Antoine equation parameters available from the NIST Webbook for iso-

propanol (IPOH-1 and IPOH-2), diisopropylether (DIPE), water/steam (H2O-1 and H2O-2), propyl-

ene and acetone. 

2.3. Impurities Generated during the Dehydration Reaction 

IPA can also dehydrate into diisopropylether (DIPE). On some basic sites, it would 

dehydrogenate back to acetone. Additionally, propylene can be rehydrated to n-propanol, 

which in turn can be dehydrogenated to propanaldehyde.  

The choice of the operating conditions also depends on the end-use applications. If 

chemical grade propylene is to be used for acrylic acid production by selective oxidation, 

the presence of trace amounts of water is not a problem since usual process conditions 

require some water in the reaction gas regardless. However, propanaldehyde content 

should be extremely low.  
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In other applications, the presence of water has to be limited. For example, in acrylo-

nitrile synthesis, although water is a reaction product, it is not present in the reagent 

stream. For polypropylene application, “polymer grade” purity must be reached.  

2.4. Impact of Operating Pressure 

When carrying out the dehydration process at 300 °C (573 K) and 30 bars pressure, 

all reagents and products are in the gas phase (see Figure 1). After reaction, when the 

temperature is reduced below 150 °C (423 K), propylene is still in the gas phase while the 

other products are mostly in the liquid phase and can be separated. When the gas is cooled 

further, propylene will eventually condense and can be easily stored and transported. In 

addition, propylene can be further purified when re-evaporated/distilled. 

These thermodynamic constraints already dictate some process conditions and key 

properties for the catalysts. We can then consider two major cases:  

• a dehydration under pressure (e.g., 30 bars), where a high purity of propylene could 

be achieved;  

• a dehydration at or close to atmospheric pressure in which some water and IPA could 

remain in small quantities. 

2.5. Impact of Operating Temperature 

When the reaction is carried out under pressure and in the gas phase, it should be 

operated above 200 °C, preferably above 250 °C; while for dehydration at atmospheric 

pressure, a temperature above 100 °C might be sufficient. In the first case, catalysts have 

to be inorganic oxides, and they have to sustain some partial pressure of steam (steaming 

can severely damage catalysts over time). In the second case, polymeric acidic catalysts 

can be considered, such as acidic resins. However, the polymeric nature of the catalyst 

will limit the operating temperature, and the equilibrium between all reactions might limit 

the conversion.  

If the endothermic dehydration reaction is carried out at too high of a temperature, 

over-cracking and polymerization could occur that can not only reduce the yield but also 

generate impurities that are difficult to separate. 

2.6. Diisopropylether Conditions 

DIPE is mainly produced by the dehydration of IPA, but it can also be produced by 

the reaction of IPA on propylene (alcoholysis reaction). It is part of the equilibrium with 

IPA, water, and propylene. To shift the equilibrium, higher temperatures are preferable. 

In most cases where DIPE formation is reported, the temperature is below 200 °C.  

2.7. Isopropanol and DIPE Safety Concerns 

Besides being flammable, IPA and DIPE are recognized as peroxide forming solvents 

Group B [14]. Several accidents have been reported in laboratories due to long-standing 

open flasks exposed to light. Therefore, it is recommended to check the IPA for peroxide 

content on a regular basis to avoid the risk of explosion when it is evaporated. The authors 

checked the French database of industrial accidents (which also includes major accidents 

abroad) for IPA and DIPE cases [15]. Out of 33 IPA and three DIPE cases, only one was 

related to an explosion during a distillation operation (but the causes are not fully ex-

plained). In most cases, IPA was only present on the site but not directly involved, and a 

large number of cases are related to transportation and storage. 

Of course, if the reaction is operated under pressure at the laboratory, glass reactors 

are replaced with pressurized flow-through reactors, which are not much different from 

usual hydrogenation reactors. 
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3. Isopropanol Dehydration as a Test Reaction 

3.1. Solid Acid–Base Test Reaction 

IPA dehydration is a well-known test reaction in catalyst screening employed to eval-

uate the acid–base properties of catalysts. Acidic catalysts will catalyze dehydration, while 

basic catalysts will favor the dehydrogenation to acetone. This test reaction is relevant at 

low conversion rates when no product formations are limited by equilibrium. It also 

means that at low conversion rates, the amount of water produced is low. In addition, the 

reaction is often done at a low partial pressure of IPA (IPA is diluted in an inert gas), low 

total pressure, and low contact times (see Table 2). So, the preferred reaction conditions 

are not the same as for a commercial process which targets large production capacities.  

3.2. Reaction Mechanism 

Decomposition (dehydration and dehydrogenation) of IPA can proceed through dif-

ferent mechanisms depending on the acid–base nature of the catalysts. It is widely ac-

cepted that propylene is formed by dehydration of IPA via E1, E1cb, or E2 mechanisms 

[16–18] (Figure 2). The E1 mechanism is a two-step mechanism involving the cleavage of 

the C-OH bond resulting in an intermediate carbenium ion that undergoes subsequent 

proton loss to form propylene [17–20]. The E1 mechanism generally requires acid sites 

and can operate without any basic sites. E1cb is also a two-step process similar to E1, but 

an isopropyl carbanion intermediate is formed as the β-hydrogen elimination takes place 

first followed by the cleavage of the C-OH bond to produce propylene [18,19,21]. In addi-

tion to the acid sites, E1cb also requires the basic sites for hydrogen abstraction (carbanion 

formation) whereas in the formation of propylene by the one-step E2 mechanism, the con-

certed water elimination occurs simultaneously by the breaking of the C-OH and β-H 

bonds of an IPA molecule that involves both the acid and basic sites [18,19,21].  

DIPE is generated by inter-molecular dehydration via the SN1 or SN2 mechanism 

[17,22,23]. The SN1 mechanism is a two-step mechanism in which an isopropoxide car-

banion (nucleophile) which is formed by β-hydrogen abstraction over the basic sites sub-

sequently replaces the hydroxyl group of another IPA molecule to form DIPE. The acid 

sites can generally facilitate the replacement of the hydroxyl group by partially binding 

the hydroxyl groups onto the acid sites. If the aforementioned nucleophilic attack and 

hydroxyl group removal occur simultaneously to generate an ether, then it is an SN2 

mechanism. Hence, both acid and basic sites in the catalysts are normally involved in 

DIPE production. It is also possible that the etherification of IPA and propylene takes 

place to form DIPE at higher conversion rates [24].  

Acetone is the IPA dehydrogenation product formed via E1cb mechanism, i.e., the 

two-step process [16,21]. Generally, the isopropoxide species formed over basic sites un-

dergo α-hydrogen abstraction forming a carbanion intermediate that finally leads to ace-

tone. Acetone can also be formed by dehydrogenation on metallic catalysts containing 

redox sites and particularly in presence of oxidizing atmosphere via the Mars–van 

Krevelen mechanism [16,25]. 

As soon as the conversion and IPA partial pressure increase, the amount of water 

formed increases. This means that any Lewis site on the catalyst is likely to be converted 

to a Brønsted site. A working catalyst in a commercial process, i.e., long reaction tubes, 

could have completely different type of active sites between the entrance and the exit of 

the reactor. In addition, these sites can be deactivated by carbon deposition and other de-

activation mechanisms such as surface reconstruction. Unfortunately, catalysts after ini-

tial activation have been rarely analyzed in as much detail as the fresh catalysts.  
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Figure 2. Schematic representation of the possible isopropanol (IPA) reaction mechanisms (adapted 

from [17,24]). 

3.3. Catalysts Investigated 

In the 1980s, almost half of the publications were on aluminas, silicas, silica–alumi-

nas, and zeolites, while they currently represent only about 30%. Formulations containing 

Zirconium, Nobium, and Gallium have emerged (Figure 3). 

 

Figure 3. Evolution of the catalyst families that have been reported during the last 4 decades (from 

1980 till 2020). Data collected from web of science. 
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Several decades ago, the catalysts investigated for IPA dehydration reaction were 

simple or mixed oxides, zeolites, and other acidic catalysts. Recent exotic catalysts have a 

low probability to be implemented because (i) they either contain Critical Raw Materials 

[26] such as noble metals, tungsten, boron, phosphorous, vanadium, gallium, etc., or (ii) 

they are produced with chemicals that might be listed as Substances of Very High Concern 

(SVHC) due to their toxicity [27] or in the SINLIST [28], which anticipates the chemicals 

that may end up in the SHVC list. 

Table 2. Selection of recent isopropanol dehydration catalysts and reaction protocols resulting in 

higher conversion rates and propylene selectivity. 

Catalysts 
b Active Sites Possibly  

Responsible for Propylene 
Reaction Conditions 

IPA  

Conversion 

(%) 

Propylene  

Selectivity (%) 
* Other Products Ref. 

SiO2-ZrO2 
LAS 

BAS 

T = 180 °C 

PIPA = 3 KPa 

N2 flow rate = 48.5 

mL·min−1 
a tcont = 0.07 s 

92 100 

DIPE 

[catalysts with Si/(Si 

+ Zr) ratios other 

than 0.7] 

[29] 

Zr-SBA-15 N.A. 

T ~275 °C 

IPA feed rate = 11 

g·h−1 

He flow rate = 833 

mL·min−1 
a tcont = 0.03 s 

96 100 

Acetone 

[T > 275 °C] 

DIPE  

[T ~200 °C] 

[30] 

Pd/AlGa-x LAS 

T = 250 °C 

PIPA ~ 3.9 KPa 

N2 flow rate ~65 

mL·min−1 
a tcont = 0.02–0.05 s 

> 95 97 

DIPE 

[T ~ 150 °C–178 °C] 

Acetone [catalysts 

with Ga/Al = 0] 

[31] 

Galium borates BAS 

T = 300 °C 

IPA & N2 flow rate = 

N.A. 
a tcont = 0.13 s 

100 98 
Acetone 

[T > 300 °C] 
[32] 

SiO2-ZrO2 BAS 

T > 210 °C 

PIPA = 3 KPa 

N2 flow rate = 48.5 

mL·min−1 
a tcont = 0.07 s 

~90 100 

Acetone 

[over catalysts with 

Si/(Si + Zr)  

ratios < 20%] 

[33] 

Zr-KIT-6 LAS 

T = 300 °C 

IPA & N2 flow rate = 

N.A. 
a tcont = 0.5 s 

93 >98 DIPE [34] 

Modified zirco-

nium phos-

phates 

BAS 

LAS 

T > 200 °C 

PIPA~4.3 KPa 

He flow rate = 20 

mL·min−1 
a tcont = 0.53 s 

100 100 

Acetone 

DIPE 

[Mo & In doped cat-

alysts] 

[35] 

Pt-Pd-sup-

ported Al2O3 
weak acid sites 

T = 300 °C 

IPA feed rate = N.A. 
a tcont = N.A. 

100 100 

DIPE 

[mainly formed on 

Pt/Al2O3 catalysts] 

[36] 

Ni-W sulfides N.A. 

T = 250 °C 

PIPA ~ 5.9 KPa 

Diluent gas = 41.7 

mL·min−1 
a tcont = 0.07 s 

100 100 — [37] 
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Ag NPs/meso-

porous silica 
BAS 

T = 250 °C 

PIPA = 1.2 KPa 

N2 flow rate = 60 

mL·min−1 
a tcont = 0.05 s 

100 >95 
Acetone 

[in O2 atmosphere] 
[38] 

Zeolites N.A. 

T = 175 °C 

IPA feed rate = 15 

g.h.mol−1 

H2 flow rate = 30 

mL·min−1 
a tcont = 0.67 s 

99 (Hβ) 

90 (HY) 

100 (Hβ) 

99 (HY) 

DIPE 

[contact time < 0.2 s] 
[39] 

* Different catalyst composition/structure, reaction temperature, contact time than the optimized conditions for 

propylene production. Exact conditions resulting in DIPE and acetone are given in square brackets []; a contact 
time (tcont) calculated at the reaction conditions assuming the catalyst density as 1.0 g·mL−1; b active sites that are 
beneficial for high propylene yield/selectivity using the reported catalysts at different conditions employed. 

These sites could be specific for each reported catalyst and may vary with catalysts/experimental conditions. 
N.A. = sufficient information is not available; N.B. = all the tests performed in fixed-bed reactors at atmospheric 

pressure; LAS = Lewis acid sites; BAS = Brønsted acid sites; IPA = isopropanol; DIPE = diisopropylether. 

In Table 2, some catalysts which have shown high IPA conversion rates and high 

propylene selectivity are reported. The active sites mentioned in Table 2 are the possible 

sites that can be advantageous for the production of propylene. Additionally, it is evident 

that these sites can vary with the catalysts and experimental conditions. Moreover, the 

LAS and BAS reported here for each catalyst are the sites present in the fresh catalysts, 

which are prone to undergo considerable changes during the dehydration reaction at 

higher temperatures, especially in the presence of water. For all these examples in which 

tests have been done with diluted IPA at atmospheric pressure, the contact times were 

recalculated considering the respective reaction temperatures. The contact time is calcu-

lated assuming the density of the catalyst as unity when it is not provided, and assuming 

that all gas flow rates (isopropanol and inert gas) are given in NTP conditions when it is 

not specified. Finally, it was calculated assuming only pure catalyst and no diluent (inert 

solid) in the catalyst bed, as these conditions are often not provided. The contact times are 

all in the range of 0.02 to 0.7 s.  

This implies that the reactor volume could be about 30 times smaller, which can have 

a huge impact on the investment cost. In that case, the main challenge could be also to 

provide enough power (heat) to the reaction to carry it in industrial conditions. The dehy-

dration reaction is endothermic, so heat has to be provided and the faster the reaction, the 

higher the power to be applied on the reactor. 

For example, the amount of heat required from 200 °C is around 51 kJ·mol−1, so a 60 

kt IPA conversion unit may require about 2 MW. If the contact time is very short, the 

catalyst bed is also short, and high heat transfer reactors such as multitubular fixed-bed 

reactors or fluid bed reactors would have to be used. 

4. Isopropanol Dehydration for Industrial Processes 

4.1. Mitsui Patented Process 

4.1.1. General Process Conditions 

Mitsui is said to have implemented the IPA dehydration in its phenol process, but 

surprisingly, it was not reported in their press releases. Only recently Mitsui started to 

communicate on IPA dehydration to propylene, but for production of biobased propyl-

ene. The advantage in the phenol process is to avoid generating acetone as a coproduct, 

when the two products have disconnected markets [40].  

An advantage of the recycling process is that the propylene, which is generated by 

dehydration, does not carry the usual contaminants of the petrochemical propylene. For 

example, the sulfur compounds such as COS (carbonyl sulfide) or arsenic as heavy metal 

contaminant, which inhibit the cumene synthesis catalyst have been removed in the loop 
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(hydrogenation/dehydration). Therefore, less deactivation can be expected when using 

recycled propylene than when using petrochemical propylene. This advantage of lower 

contaminants would also be relevant for cases other than phenol synthesis. 

In the process, an acidic catalyst is generally used. Although the patents claim many 

catalysts, the preferred ones are γ-alumina and titania. The dehydration reaction is pref-

erably done between 260 and 350 °C, and under a pressure such as 1.8 MPa (or 18 Bars). 

The reaction products are then cooled below 40 °C. In those conditions, liquid propylene 

can be recovered and further dried and purified before use in the cumene synthesis.  

The dehydration process could use a fluid bed reactor, but a fixed-bed unit is pre-

ferred. A fluid bed catalyst should be in powder form, with no diffusion limitations, while 

a fixed-bed catalyst should have a particular shape to reduce the pressure drop. A fluid 

bed reactor allows a continuous catalyst regeneration or replacement, while a fixed-bed 

reactor has a simpler design. So, the catalyst lifetime (or cycle time) is an important crite-

rion in the selection of the fixed-bed operation. Propylene purities above 99.5% are 

claimed to be achieved.  

In a practical example, a tubular reactor of 25.4 mm internal diameter and 500 mm 

length was loaded with 20 mL of alumina catalyst with particle size between 1.19 and 2.38 

mm. When the reactor reaches 320 °C, IPA is fed at a 40 mL·h−1 rate at a pressure of 1 MPa 

(10 Bars). The contact time can be calculated as: 1/(40 × density(0.786) × /MM(60) × 22 400 

× (320 + 273)/273 × (1/10)/20/3600) = 28 s). The reaction products are liquid water (mostly) 

and gaseous propylene, respectively 9.5 g·h−1 and 12.2 L·h−1. The IPA conversion rate was 

99.6% and propylene yield was 99.3%. The propylene purity in the gas phase was 99.9%. 

4.1.2. Preferred Catalysts: Alumina 

In a separate patent family, Mitsui patented a proprietary alumina [41]. The key fea-

tures of that γ-alumina is a low content of alkaline metals (less than 0.5 wt.%), and less 

than 10 wt.% silica. The catalyst has a low acidity, quantified by Hammett indicators, in 

the pKa range between 3.3 and 6.8, with less than 0.5 meq·g−1 (dry basis). In addition, the 

alumina should have a mean pore diameter between 3 and 15 nm, and preferably 4 to 7. 

Correspondingly, the pore volume is preferably between 0.5 and 0.8 mL·g−1. 

4.1.3. Acidity Scales 

Solid acid catalysts are often characterized with the Hammett acidity scale. This is 

very convenient in patent applications because it is based on color indicators, and in case 

of dispute with a competitor it would be easy to convince a judge that the color with a 

given catalyst is not the same as with a competitor’s catalyst. Besides this advantage, there 

are several drawbacks: the acidity is usually measured with the indicator in benzene so-

lution (other solvents are also possible), but the amount of water on the solid is difficult 

to control, and the adsorption of solvents and titrants on the catalyst surface are not suffi-

ciently controlled. It is sometimes possible to directly adsorb the color indicator on the 

catalyst surface from gas phase, but this is limited to white catalysts. 

Acidity is also measured by ammonia thermo-programmed desorption (TPD), but 

this gives only a rough indication of the strength and number of acid sites. It can also be 

measured through calorimetric measurements in which the energy of adsorption for each 

dose of ammonia is related to the strength of the acid sites. This is much more precise but 

also much more time consuming. 

Acidic resins cannot be characterized without water, and their thermal stability limits 

the potential use of other techniques. Looking at the various acidity scales and catalysts 

that have been characterized, a Hammett acidity between 3.3 and 6.8 corresponds to a 

low-acidity catalyst. Other products in this range also include silicalite and some alkaline 

forms of zeolites. Acidic resins such as Amberlyst 15 and Amberlyst 35 are more acidic. 

Silica-alumina and acidic zeolites are also much more acidic than aluminas. So, the good 

performance of alumina in this reaction indicates that one does not need a strongly acidic 
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catalyst. However, low basicity would be more relevant to avoid the side reactions leading 

to acetone and DIPE. 

4.1.4. External Mass Transfer Limitations 

The challenge with propylene is that it is more reactive than ethylene and isobutene 

and that it could polymerize and deactivate the catalyst leading to a loss in yield. The 

temperature and residence time, at which the reaction is carried out, are equally im-

portant. They determined a maximum residence time based on the linear velocity for the 

IPA, which has to be above 1 cm·s−1 and preferably below 10 cm·s−1 in the reaction condi-

tions (pressure and temperature). An excessively high linear velocity would generate 

more pressure drop, and certainly an excessively short contact time in a given reactor. 

When the linear velocity is too low (below 1 cm·s−1), the conversion drops. This is an indi-

cation of external mass transfer limitations taking place at low gas velocities. In those con-

ditions, when the temperature is increased further, conversion also increases but byprod-

ucts are significant at low temperature. 

In Table 3, extracted from Mitsui’s patent, the experimental data on shaped catalysts 

are reported. When looking at the values for “comparative examples” three and five (CE3 

and CE5), the volume of catalyst and the IPA flow rate have been multiplied by five. The 

contact time remained the same in both cases, but the gas linear velocity in CE5 is five 

times that of CE3. Similar conversions and yields are reached at a lower temperature. 

There is a further increase in conversions/yields when the linear gas velocity is further 

increased in examples E12 and E13. In addition, although the amount of data is very lim-

ited, looking at the first two data of CE3 that are not at full conversion, the calculated 

activation energy is about 27.5 kJ·mol−1, which is in line with the usual values resulting 

from external mass transfer limitations.  

Table 3. Data extracted from Mitsui’s patent EP379803 illustrating the external mass transfer limi-

tations. 

Reaction Conditions 
Comparative Example Example 

CE3 CE4 CE5 E12 E13 

Catalyst loading (mL) 20 20 100 200 400 

Reaction pressure (kg/cm2 G) 20 10 20 18 18 

Isopropanol feed (mL/h) 60 60 300 600 1200 

(M × R × T)/(3.6 × P × π × r2) 0.1 0.2 0.5 1.1 2.1 

Catalyst center temp. (°C) 320 340 360 300 320 280 290 310 280 290 280 290 

Results             

Isopropanol conversion 

(mol%) 
80 96 99 81 99 59 88 >99 73 >99 71 >99 

Propylene selectivity (mol%) 87 96 99 70 95 84 95 >99 90 >99 88 >99 

Propylene yield (mol%) 70 92 98 57 94 50 84 >99 66 >99 62 >99 

By-product * amount (mol%) 13 4 1 30 5 16 5 <1 10 <1 12 <1 

Propylene amount (mol/h) 0.55 0.72 0.77 0.45 0.74 1.95 3.28 3.85 5.16 7.69 9.81 15.39 

* By-products include acetone, diisopropyl ether, etc. For calculation, isopropanol (molecular 

weight 60) has a density of 0.785 g/cm3. 

The experimental results were generated with catalyst particles between 1.19 and 

2.38 mm diameter. Typical experimental conditions were 1.0 MPa (relative pressure), 320 

°C, and a liquid hourly space velocity of 3 h−1. The reactor was the same as in the previous 

patent application. The IPA conversion reached 98.4% and the propylene yield 98%. The 

propylene purity is 99.5% and the main side product is acetone (0.5%). In other examples, 

the byproducts also include DIPE. 
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4.1.5. Internal Mass Transfer Limitations or Capillary Condensation 

The results also show that for the catalysts with low pore diameters, the IPA conver-

sion under pressure starts to decrease, which suggests that capillary condensation might 

have occurred, and/or that there are internal mass transfer limitations.  

The relationship between catalyst activity and the pore diameter is determined using 

the alumina with very low sodium content in the following experimental conditions: 1.8 

MPa (relative pressure), 300 °C, a liquid hourly space velocity of 3 h−1 and a contact time 

of about 35 s. The results reported in Figure 4 are Table A and Fig. 1 taken from the patent. 

When the pore diameter is too large, conversion is low because of the low surface area. 

When the pore diameter is below 6 nm, the conversion might be limited by mass transfer. 

 

 

 

Figure 4. Table A and Fig. 1, extracted from patent EP379803. Impact of catalyst pore diameters. 

When the pressure decreases, the IPA conversion increases and the propylene yield 

increases. So, one could be tempted to operate in these conditions, but the separation of 

the products becomes more complicated. In order to keep a low operating temperature in 

the range of 300 °C, it is necessary to have a high gas linear velocity. This means that the 

reactor length should be sufficiently long to get enough residence time.  

Using the Laplace–Kelvin equation, we can calculate the pore diameter at which ca-

pillary condensation is expected to occur. Water and IPA are the potential candidates for 

this phenomenon, but as the reaction proceeds IPA is more likely to condense near the 

reactor entrance, while water partial pressure is larger near the end of the reactor. Taking 

into account the surface tension and respective partial pressures, IPA is the reagent on 

Table A 

Fig. 1 
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which the calculations should be done. In Figure 5, the data are reported for 18 bars, 1 bar, 

and 0.1 bar. When the pore diameters become too small the equation is no longer valid, so 

it is reported here only for illustration purposes. At 18 bars and 200 °C, capillary conden-

sation is to be expected for pores below 9 nm and below 4 nm when the reaction temper-

ature is increased to 235 °C. As the total pressure decreases, capillary condensation is less 

likely. In Figure 5, we also reported typical pore diameters for some commonly used acid 

catalysts. Capillary condensation explains why solids such as alumina and titania proved 

to be more efficient than zeolites under pressure, and the acidity of these solids alone 

would not be the sole explanation. 

There is a compromise between the surface area and the pore diameter, because large 

pores lead to low surface area. If only diffusion limitations are feared, it is possible to 

overcome this issue by using catalysts with bimodal pore size distribution. Usually, inter-

nal mass transfer limitations are not evidenced in academic experiments involving 

crushed catalysts, and the impact of the pore size distribution required to use shaped cat-

alysts of a few mm size. 

 

Figure 5. Calculation of the pore diameter for capillary condensation based on the Laplace–Kelvin 

equation for isopropanol. Pore diameter ranges for several candidate catalysts are also reported. 

4.1.6. Catalyst Deactivation 

Catalyst deactivation studies showed that although IPA conversion remained above 

90% after the catalyst is loaded with 13 wt.% of coke, coke deactivation can be expected 

for these catalysts and in these reaction conditions. 

In a subsequent patent application, Mitsui describes further improvements to the cat-

alysts [42]. The alumina should have low impurity content (less than 0.3 wt.% excluding 

silica). More specifically, it should have a low sulfur (as sulfates) content and a low so-

dium content. The reported catalyst contains between 0.5 and 5 wt.% silica. The catalyst 

acid–base properties are certainly affected, not only by the presence of alkaline impurities 
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and sulfates but also by the silica. As discussed previously, basic sites catalyze the for-

mation of side products, while overly acidic sites can trigger coke formation. 

Since the reaction is going to generate a lot of water/steam, the catalysts have to be 

resistant to steaming conditions. The presence of these impurities will severely affect the 

resistance to steaming, and gamma alumina was partially converted into alpha alumina. 

The activity of the catalyst is reduced and the selectivity to side products increased. This 

suggests that DIPE is an intermediate that is, for example, produced by the reaction of IPA 

with propylene, which can further dehydrate to propylene.  

4.2. IFPEN Patented Process 

4.2.1. General Process Conditions 

IFPEN also considered the dehydration of IPA in an ethanol stream [43]. Alumina is 

again the preferred catalyst with a low content of sodium and sulfur. The preferred con-

ditions include an operation under pressure (0.2 to 2.0 MPa), temperature from 350 to 500 

°C, and a weight hourly space velocity (WHSV) between 1 and 10 h−1. Assuming the alu-

mina packing density to be 1, the contact times calculated are in the range of 40 s (between 

7 and 80 s) if pure IPA was used and comparatively less if water is co-fed with the ethanol–

isopropanol–water mixture. Dehydration of an alcohol mixture is particularly relevant 

when it was produced either from syngas or through the IBE fermentation process. 

4.2.2. Impact of Water Fed with Alcohol 

The dehydration reaction is endothermic, but energy saving can be made to vaporize 

the reagents when recovering the latent heat contained in the reaction products. It may 

seem counterintuitive to make a dehydration reaction in the presence of water/steam; 

however, water can have several roles in the reaction: (i) it is a reaction product that favors 

a reverse reaction, (ii) it has a high calorific value and brings heat to the catalyst for an 

endothermic reaction, and (iii) it favors coke removal and contributes to keep the catalyst 

surface clean.  

For the energy balance, we have to take into account that we have to bring energy to 

evaporate isopropanol. The amount of energy needed corresponds to the latent heat and 

the sensible heat. A significant part of it can be recovered after the reaction when the prod-

ucts have to be cooled to room temperature. If water is added with isopropanol, the en-

ergy needed to evaporate it will be mostly recovered after the reaction, provided that an 

efficient combination of heat exchangers is implemented. 

Isopropanol’s enthalpy of vaporization is around 40 kJ·mol−1, near its boiling point 

[44], while that of water is around 41 kJ·mol−1 at the same temperature. So, there is enough 

energy in the product stream (due to steam) to evaporate the feedstock (isopropanol). It 

also means that adding water to the reagents, as described in this patent application, has 

a minor impact on the energy consumption. Water/steam is used as a heat carrier in en-

dothermic dehydration reactions, which allows the use of adiabatic reactors. However, 

the water in the feed stream reduces the IPA’s partial pressure and favors the reverse 

reaction, but it can also inhibit more side reactions, leading to a better global selectivity.  

4.2.3. Catalysts and Impurities Generated by the Reaction 

A major difference with the Mitsui process concerning the catalyst is that the catalyst 

phase is not restricted to gamma alumina, but other phases can also be present in the cat-

alyst. The typical reaction conditions are 375 °C, 0.2 MPa, a mix of ethanol–IPA–water 

(1/1/2 weight ratios) and a calculated contact time of 1.8 s. Depending on the process con-

ditions and catalysts, the following impurities are detected: DIPE, propane, propanal, and 

ethoxypropane (because of co-fed ethanol and IPA). DIPE is the intermolecular dehydra-

tion product and propanal is the n-propanol dehydrogenation product. If propanol was 

not present as impurity in the feed stream, it is probably produced by rehydration of pro-

pylene to 1-propanol followed by dehydrogenation to propanaldehyde. The hydrogen, 
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which is either produced by this dehydrogenation reaction or generated by coke for-

mation, can be also transferred to propylene to generate propane. Propanal and acetone 

can lead to aldol reaction products that may remain trapped in the catalyst and slowly 

deactivate it. So, it is relevant to track those impurities even at low dosage. 

4.3. Versalis’ Patented Process 

4.3.1. General Process Conditions 

Versalis also considered IPA dehydration to integrate it in a phenol process [45]. In 

their case, the preferred catalysts are large pores zeolites, having BEA or MTW structures 

such as ZSM-12. 

The operating conditions differ from the previous patents, as the preferred tempera-

ture range is lower, i.e., between 175 and 220 °C, and the pressure range is between 0.01 

and 2 MPa, preferably between 0.09 and 0.2 MPa, which are lower when compared to 

Mitsui’s process. A pressure slightly above the atmospheric pressure is necessary to push 

all the reagents and products through the unit and downstream equipment. The WHSV 

is in the same range as that of the IFPEN case for similar pressures. The proposed catalysts 

are shaped, for example, into 2 × 10 mm extrudates with an alumina binder. The examples 

were generated for temperatures close to 200 °C, pressures between 0.1 and 0.2 MPa, and 

WHSV between 1 and 2 h−1. This translates into a contact time of about 3 to 11 s. The low 

total pressure implies that the reaction products must be cooled to low temperature (5 °C) 

to trap most of the water.  

4.3.2. Deactivation and Side Products 

The side products reported in this reaction include DIPE but also isobutane, acetone, 

olefins, and four to six carbon paraffins. With a ZSM-12 catalyst, a conversion above 99.0% 

and a selectivity above 97.9% were recorded over 1008 h. The selectivity to DIPE and other 

side products tend to decrease over the time of operation. This might be a sign that non-

selective sites tend to be deactivated faster than the selective sites. With a Beta zeolite, 

similar conversions and yields are obtained. Alumina, at 0.1 MPa, for which a higher tem-

perature is required, leads to slightly higher conversion and propylene selectivity. In sim-

ilar conditions, alumina requires about 50 °C more operating temperature to achieve sim-

ilar performance to MTW and BEA zeolites. However, these zeolitic catalysts have not 

been tested in the high-pressure range that would facilitate the downstream separation. 

Formation of saturated hydrocarbons (propane), either from hydrogen generated 

from side reactions or from hydrogen transfer during coke formation, is not necessarily 

an issue for all propylene applications. Only the “Polymer Grade” propylene has a low 

propane content, whereas the “Chemical Grade” propylene can accept several percent of 

propane. However, the formation of this side product is accompanied by a faster deacti-

vation of the catalyst, which might require frequent catalyst regeneration/decoking and 

induce the selection of specific reactor configurations (such as circulating fluid bed reac-

tors or tandem reactors). 

4.4. Reverse Reaction: Propylene Hydration 

Propylene hydration is currently the alternative process for acetone hydrogenation 

to produce IPA. As of 2022, it represents about 2/3rd of the installed capacities for IPA 

production. The reverse reaction, i.e., propylene hydration to IPA, deserves attention, as 

the IPA dehydration is equilibrium limited. 

Mobil Oil Process 

Mobil Oil Corporation patented a process [46] in which propylene reacts with an un-

der-stoichiometric amount of water over metallosilicate catalysts to produce IPA and 

DIPE. Preferred catalysts include ZSM-5, ZSM-23, ZSM-35, and Ferrierite. Water concen-

tration is limited to avoid deactivation of the catalyst. So, the water to propylene ratio is 
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between 0.05 and 0.499, preferably between 0.18 and 0.33. However, if water deactivates 

or reduces the activity of the catalyst during the hydration reaction at high IPA concen-

tration, it will be also the case during the dehydration reaction, especially at high conver-

sion rates where a lot of water is produced.  

Equilibrium considerations suggest that the hydration reaction is favored at low tem-

peratures, high pressures, and high water/propylene ratios. At low water concentration, 

DIPE would dominate the equilibrium composition. The challenge is that at high water 

concentration the catalyst is unstable, and at low water concentration deactivation by coke 

formation would occur. Hence, it is necessary to operate at a low conversion per pass, 

preferably at temperatures in the range of 150 to 250 °C, pressures between 2.8 and 7.0 

MPa, and WHSV’s between 1 and 10. These conditions are similar to those described in 

the dehydration processes, which suggests that the reverse reactions are taking place. 

However, the examples are best in the 150 to 200 °C range but with low productivities, 

and in several cases both IPA and DIPE are produced.  

5. Intentional Diisopropylether Synthesis 

5.1. Patented Processes 

Several patents and publications report the intentional synthesis of the byproduct 

DIPE, which should be avoided when propylene is the targeted product. They give valu-

able information about the mechanism of DIPE formation, and the conditions that should 

be avoided when propylene is the target. DIPE could be used as a fuel additive in gasoline, 

and that is probably the reason why most of the patents were filed by oil companies. A 

significant share of DIPE was produced as a coproduct in propylene hydration to IPA.  

5.1.1. Gulf Oil Process Conditions 

As explained in the Gulf Oil patent [47], the hydration is catalyzed by acid catalysts, 

and both reactions from propylene to IPA and DIPE are equilibrium limited. In addition, 

the dehydration of IPA to DIPE can also take place over acid catalysts which are also lim-

ited by the equilibrium. The alcoholysis of propylene with IPA is also possible, and does 

not imply water formation or consumption, but it is equilibrium limited and catalyzed by 

acids. 

In the process described in this patent, DIPE is produced from IPA, and eventually 

some propylene but in a liquid phase and under pressure. The preferred solid acid catalyst 

is a sulfuric acid-treated Montmorillonite with sufficient acidity to maintain a pH below 

4 in water at standardized conditions. The reaction is done in a fixed-bed reactor at tem-

peratures between 120 and 250 °C, and more preferably between 185 and 210 °C. In the 

first example, the conditions employed are 110 atm and a liquid hourly space velocity 

(LHSV) of 10 h−1 (based on the liquid flow rate at room temperature) that corresponds to 

about 6 min of equivalent contact time. In the best conditions, IPA conversion and DIPE 

selectivity are in the range of 50–60%. 

Alternative catalysts such as acidic resins such as the Dowex 50WX8, Amberlyst A15, 

and AGC-243 were also tested, but at lower temperatures because of their low thermal 

stability, and their productivities were lower. Acidified 13X molecular sieve and Silica-

Alumina 979 from Grace were found inadequate but without details. However, when pro-

pylene is co-fed on the 13X catalyst, a propylene yield above 100% is achieved, suggesting 

that IPA dehydration to propylene is taking place instead. Other inorganic acids also gave 

positive propylene yields. However, they might be attractive for IPA dehydration to pro-

pylene. 

When propylene is co-fed with IPA, a part of it is also converted. This illustrates that 

the reactions are indeed limited by equilibrium and/or that propylene hydration or alco-

holysis are taking place. 

These conditions are relevant for IPA dehydration to propylene as described in the 

previous section when the catalyst and process favor capillary condensation. Then, in the 
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small pores, similar conditions of pressure and temperature could be found, which can 

explain some DIPE formation. Based on the patent, the most appropriate conditions for 

DIPE production is a temperature around 200 °C and a pressure between 35 and 110 atm 

while operating at low contact times. The pressure is above the range previously described 

for IPA dehydration to propylene and the temperature is lower, while the contact time is 

longer.  

5.1.2. Chevron Process Conditions 

Chevron [48] patented a process for the hydration of propylene in which the DIPE is 

also hydrolyzed with excess water. The key idea in this process is that the DIPE is recycled 

at the front-end of the hydration process, where it is contacted with the process water in 

large excess. The reaction produces IPA, and then the stream is merged with the fresh 

propylene. The products are separated and remaining DIPE is returned at the front end. 

If we assume that the reaction reaches a steady state at this second stage, it means that 

there is no accumulation of DIPE in the process. DIPE is more volatile than water and IPA, 

so it can be separated from them as an azeotrope containing 4% IPA and 5% water. How-

ever, IPA separation from water is more difficult because of the azeotrope. The interest 

for the refiners is of course to use “Refinery Grade propylene”, which contains a lot of 

propane but acts as inert in the reaction.  

In the Chevron process, the preferred catalyst is an acidic resin for both the reaction 

stages. The acidic resins were Amberlyst XN1011 or Amberlite XE-372. However, other 

solid acid catalysts such as ZSM5, silicalite, alumina-silica, or alumina were also used. The 

pressure is about 100 bars and the temperature between 150 and 260 °C, while the reaction 

is preferably done with an excess of water. The impurities in the collected IPA come partly 

from the olefinic stream that contains some C4s and also from the dimerization of propyl-

ene. The LHSV in the first reaction zone is between 0.03 and 1.0 h−1, indicating a contact 

time of several hours. In the examples, the DIPE reacts with water in a 1/24 ratio over an 

acidic resin at about 150 °C and 100 bars. Equilibrium was achieved at a low LHSV (more 

than 20 h contact time), and gave a composition in equivalent propylene of 6% propylene, 

22% DIPE, and 72% IPA. So, the equilibrium constant estimated in these conditions is 

0.017, which suggests that a high amount of water is needed to shift the equilibrium or 

that completely different temperature and pressure conditions should be selected. 

5.1.3. Mobil Multistage Process in Absence of Aqueous Phase 

More recently, Mobil patented a process for the production of IPA and DIPE through 

propylene hydration with a Beta zeolite catalyst [49]. Propylene is fed along with water, 

IPA, and/or DIPE in a multiple stage reactor, and with increasing “water equivalent” (wa-

ter, IPA, DIPE) ratios. 

Figure 6 illustrates the composition reached at each stage with intermediate addition 

of propylene, water, and IPA/DIPE at about 70 bars and 160 °C. If the same equilibrium 

was reached at each stage, then the equilibrium constant that can be calculated from these 

compositions should have remained constant, but that is not the case. The Q value is the 

ratio of water equivalent (water + IPA + DIPE) to the propylene equivalent (propylene + 

IPA + 2 × DIPE) at each stage. 
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Figure 6. Extracted from Mobil patent for a multistage process with increasing water equivalent. 

However, the process favors the alcoholysis (etherification) of propylene with IPA 

over the hydration and maintains a non-aqueous phase in the reactor. The organic phase 

remains rich in IPA, DIPE, and propylene. So, the process differs from the previous one 

in the sense that a small amount of water is present and either DIPE or IPA is recycled in 

the reactor depending on the targeted product. 

The preferred reaction conditions are 120 to 220 °C, 34 to 138 bars, and a water to 

olefin ratio of 0.1 to 5. In addition, the main feature of this process is the absence of an 

aqueous phase, which is favorable to reduce the ageing of the catalyst. Catalyst ageing is 

favored by water and propylene phases. For that reason, water is replaced by IPA in the 

hydration of propylene to DIPE. Several catalysts were screened in autoclave and zeolite 

beta showed the best intrinsic selectivity at low conversion compared to ZSM5 > Amber-

lyst 15. 

When DIPE is fed with an equal molar amount of water to a fixed-bed reactor, the 

conversion favors the formation of IPA over propylene, at a low conversion. Since the 

experiments are done at high WHSV, meaning short contact time, they illustrate the initial 

kinetic of the reactions. In presence of water, DIPE hydrolysis is favored over DIPE de-

composition to propylene. 

Other experiments show that at 160 °C and about 70 bars, DIPE is converted to IPA 

at a low contact time. The equilibrium constant at 162 °C, calculated from the composition 

at equilibrium, was found to be 2.68. The value is consistent with the favored formation 

of DIPE at low temperature from propylene and water and under pressure, but is valid 

only for single liquid phase systems. 

In the patent application already discussed above [46], Mobil gives more details on 

the preferred catalyst, zeolite Beta. The production of DIPE is carried from propylene and 

water or from IPA, and the surface acidity of the catalyst is reduced by a chemical treat-

ment with a diacid such as oxalic acid. However, dealumination of the zeolite should not 

go beyond 50%. When the porosity of the zeolite is filled with an organic compound, the 

dealumination process affects mostly the external surface of the zeolite crystals and re-

duces the acidity. With such a treatment, the activity for IPA conversion is increased. 

There is an increase in the catalyst activity, but no drastic change in product distribution 

is observed at similar conditions (about 160 °C and 70 bars). 
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5.2. Academic Literature 

In the academic literature, the publication from Heese et al. [24] provides additional 

inputs on the conditions leading to DIPE or propylene from IPA. The authors conclude 

that in both the gas and liquid phases, the reaction proceeds by two parallel routes: the 

dehydration of IPA and the alcoholysis (etherification) of propylene, with activation en-

ergies of 75 and 92 kJ·mol−1, respectively. The formation of DIPE is favored at high pres-

sure and sufficient temperature to speed up the reaction. For the liquid phase experi-

ments, the reaction was carried at 50 bars and 120 °C with an acidic resin in trickle flow 

mode. In those conditions, propylene is in supercritical conditions, besides a liquid water 

phase. IPA is the primary product, but at longer contact times DIPE production domi-

nates, as propylene and IPA are consumed.  

When pure IPA is fed in the same conditions (50 bars, 120 °C), propylene, water, and 

DIPE are the primary products, and at longer contact times, IPA reacts with propylene to 

form more DIPE. At atmospheric pressure and the same temperature, the same products 

are formed; however, this time, propylene and water dominate the products, and alt-

hough DIPE is formed at low contact time, it disappears completely. After about 13 s con-

tact time (based on GHSV), the conditions are close to equilibrium, which seems to be 

fully reached by 2 min contact time. 

The three equilibrium reactions: propylene hydration to IPA, IPA dehydration to 

DIPE, and propylene alcoholysis to DIPE take place in the gas phase as well as in the liquid 

phase.  

6. Catalyst Selection Criteria 

Based on this literature review, some guiding principles for catalyst selection can be 

derived:  

• Acidic catalysts are needed, with low to medium acid strength and with extremely 

weak basic sites to avoid side product formation; 

• Pores of sufficiently large diameter are needed, especially if the reaction is carried 

out under pressure; 

• Catalysts should be resistant to steaming conditions, since the reaction is producing 

water at a high temperature; 

• A catalyst life of at least several months is needed for fixed-bed operations, and de-

activation by coke formation or surface reconstruction should be minimized. 

6.1. Capillary Condensation 

Capillary condensation in the porous catalyst should be considered, especially if the 

reaction has to be carried out under pressure. In order to maximize the catalyst activity, a 

large surface area is preferred. This would come with small pore diameter in which rea-

gents and products could accumulate and lead to deactivation. So, when working under 

pressure, catalysts with larger pore diameters might be preferred. When capillary conden-

sation occurs, the pores and the surface are saturated with IPA and the reaction can take 

place in a supported liquid-like phase or in conditions that favor DIPE formation. Espe-

cially, it is more likely to have two neighboring adsorbed IPA molecules on the catalyst 

surface, thereby increasing the chances of producing DIPE. To reduce side product for-

mation, larger pore diameters, higher temperature, and/or lower pressure would be fa-

vorable. 

6.2. Catalyst Resistance to Steaming 

Catalyst steaming will occur during the reaction because of the high water partial 

pressure and temperature, and this adds a selection criteria to the catalyst for industrial 

operation. Deactivation due to steaming will be more severe under pressure and at high 

temperatures, so the choice of operating conditions will have a large impact. Of course, 

the presence of high partial pressure of steam on the catalyst will impact the type of acid 
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sites present on a working catalyst. All Lewis acid sites are likely to be quickly converted 

to Brønsted acid sites. 

6.3. Catalyst Life Expectancy 

If the catalyst deactivates quickly, it needs to be either reactivated or replaced. This 

has an impact on the choice of reactor technology and on the operating cost. If the catalyst 

deactivates in a matter of a few seconds but can be easily reactivated, the circulating fluid 

bed reactor is the technology of choice. The catalyst will be used as powder of a few tens 

of microns and internal and external mass transfer limitations can be disregarded. 

If the catalyst deactivates in a matter of a few minutes or hours, then tandem fluid 

bed reactors can be the technology of choice. When the deactivation is a matter of hours 

or days, mobile-bed reactor technology is appropriate. The catalyst should be as shaped 

particles of a few millimeters, with high mechanical properties. In that case, the heat trans-

fer during the reaction would have to be done through the gas phase, meaning that, for 

example, the heat is carried by additional steam fed to the reactor. 

Preferably the deactivation occurs in a matter of months and the reactor can be a 

fixed-bed reactor, and for example, a multitubular reactor to improve heat transfer to the 

catalyst. These reactors take time to be unloaded and reloaded with fresh catalyst, and 

any such period means a loss in production days and hence, a decrease in profit margin. 

So, the longer the catalyst life, the better it is. In a few cases, the catalyst can be reactivated 

in situ, but it might be preferable to unload the catalyst and make a better regeneration ex 

situ. This strongly depends on the catalyst cost, the deactivation mechanism, and the re-

generation conditions.  

6.4. Activation Energies and Reaction Selectivity 

Basic sites on the catalyst surface catalyze the formation of side products such as ac-

etone. In most of the application for propylene, acetone is a contaminant and has to be 

minimized.  

A good catalyst should not only have a low formation rate of acetone, but also have 

a low activation energy, and more specifically a much lower activation energy than the 

IPA to propylene reaction. In fact, the larger the ratio of activation energies between pro-

pylene formation and acetone formation, the better it is. Any variation in reaction temper-

ature will significantly affect the selectivity, and it would be easier to find more appropri-

ate conditions for the reaction. 

Figure 7 illustrates the impact of the reaction temperature on the selectivity for pro-

pylene production. For three different catalysts, the Arrhenius plots for the acetone and 

propylene production are reported, and they show that the activation energies for acetone 

production are lower than for propylene production. Alumina appears as an attractive 

catalyst since it has the lowest rate of formation of acetone. The data are extrapolated to 

280 °C (1000/T = 1.8), where it is evident that niobium oxide would give similar selectivity 

than alumina. By increasing the temperature, the selectivity would be enhanced, and so a 

higher temperature would be preferred. 

Higher temperatures are likely going to lead to less acetone and less DIPE but are 

more favorable for catalyst deactivation by coke formation and/or surface reconstruction. 

Hence, an appropriate balance needs to be found for the selected catalysts. 
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Figure 7. Arrhenius plots for acetone (dashed lines) and propylene (continuous lines) formation 

from isopropanol. Data computed from [50] and extrapolated to 280 °C. 

7. Conclusions 

This review highlights how the process conditions, and especially the downstream 

purification section, can impact the purity of recovered propylene and the required cata-

lyst properties.  

Isopropanol dehydration can be carried at atmospheric pressure or under pressure. 

Under pressure, the separation of products can be facilitated as water and the remaining 

IPA are condensed first upon cooling; while propylene will be condensed at lower tem-

perature. This is particularly relevant if high-purity “polymer grade” propylene is needed 

in the process. Therefore, a total pressure of 20 bars and a reaction temperature of about 

300 °C with contact times of several seconds would not be uncommon at an industrial 

scale. If traces of water, remaining IPA, acetone, DIPE, and propane can be accepted for 

the downstream process, then a reaction closer to atmospheric pressure might be suitable. 

That could be the case when “chemical grade” propylene is to be used. It is particularly 

relevant when the reaction products of the dehydration stage can be directly fed into the 

downstream reaction without purification, thereby saving significant operating and cap-

ital costs.  

The choice of the operating pressure determines the type of catalyst. Higher pressure 

means higher temperature for the dehydration step. Some zeolitic catalysts would deacti-

vate faster under the steaming conditions of the dehydration reaction. They are however 

appropriate for reactions around 200 °C, provided that they have large pores.  

Several side products including DIPE, acetone, propanal, propane, olefins, and oli-

gomers have been reported. They illustrate side reactions taking place: dehydrogenation, 

oligomerization, rehydration, hydrogen transfer, and probably aldolizations. Some of 

these impurities can be challenging in the downstream applications, and a “polymer 

grade” purity level might be difficult to reach. 

In some cases, mass transfer limitations occur. In order to avoid this, a sufficiently 

high gas linear velocity is necessary. Additionally, catalysts with sufficiently large pores 

(pores larger than 4 nm, for example) are preferred when catalysts are used in the form of 
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pellets. In addition, a bimodal pore size distribution can help to improve the diffusion in 

the catalyst particles.  

Catalyst deactivation by coke formation, but also due to the formation of more stable 

phases in steaming conditions, has been reported. In addition, the selectivity for side prod-

ucts also changes with the time on stream. So, it is relevant to more deeply characterize 

the catalyst under working conditions. 

Dehydration of IPA to propylene is favored in gas-phase conditions, while DIPE is 

more favored in liquid-phase conditions. The liquid phase is achieved under high pres-

sure operation. Nevertheless, since capillary condensation can take place in the small cat-

alysts pores, DIPE can be formed even in the gas-phase process if the catalyst is not 

properly selected.  

The reaction might require high temperatures in order to obtain the appropriate ad-

sorption–desorption equilibrium over the catalyst surface. At higher temperatures, the 

catalyst surface is not completely covered and adsorption of two IPA molecules or one 

IPA and one propylene molecule on two neighboring sites is less likely. So, the risks for 

the formation of DIPE are reduced. However, at higher temperatures, the formation of 

propylene oligomers becomes more favored.  
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19. Aramendıá, M.A.; Borau, V.; Jiménez, C.; Marinas, J.M.; Porras, A.; Urbano, F.J. Magnesium Oxides as Basic Catalysts for Or-

ganic Processes: Study of the Dehydrogenation–Dehydration of 2-Propanol. J. Catal. 1996, 161, 829–838. 

https://doi.org/10.1006/jcat.1996.0246. 

20. Larmier, K.; Chizallet, C.; Maury, S.; Cadran, N.; Abboud, J.; Lamic-Humblot, A.-F.; Marceau, E.; Lauron-Pernot, H. Isopropanol 

Dehydration on Amorphous Silica–Alumina: Synergy of Brønsted and Lewis Acidities at Pseudo-Bridging Silanols. Angew. 

Chem. Int. Ed. 2017, 56, 230–234. https://doi.org/10.1002/anie.201609494. 
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